Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 15(2)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38392526

RESUMO

Thrips are economically important pests, and some species transmit plant viruses that are widely distributed and can damage vegetables and cash crops. Although few studies on thrips species have been conducted in Bangladesh, the variation and genetic diversity of thrips species remain unknown. In this study, we collected thrips samples from 16 geographical locations throughout the country and determined the nucleotide sequences of the mitochondrial cytochrome c oxidase subunit 1 (mtCOI) gene in 207 thrips individuals. Phylogenetic analysis revealed ten genera (Thrips, Haplothrips, Megalothrips, Scirtothrips, Frankliniella, Dendrothripoides, Astrothrips, Microcephalothrips, Ayyaria, and Bathrips) and 19 species of thrips to inhabit Bangladesh. Among these, ten species had not been previously reported in Bangladesh. Intraspecific genetic variation was diverse for each species. Notably, Thrips palmi was the most genetically diverse species, containing 14 haplotypes. The Mantel test revealed no correlation between genetic and geographical distances. This study revealed that thrips species are expanding their host ranges and geographical distributions, which provides valuable insights into monitoring the diversity of and control strategies for these pests.

2.
PLoS One ; 19(2): e0290929, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38319944

RESUMO

Honeybees require an efficient immune system to defend against microbial pathogens. The American foulbrood pathogen, Paenibacillus larvae, is lethal to honeybees and one of the main causes of colony collapse. This study investigated the immune responses of Apis mellifera and Apis cerana honeybees against the bacterial pathogen P. larvae. Both species of honeybee larvae exhibited significant mortality even at 102 103 cfu/mL of P. larvae by diet-feeding, although A. mellifera appeared to be more tolerant to the bacterial pathogen than A. cerana. Upon bacterial infection, the two honeybee species expressed both cellular and humoral immune responses. Hemocytes of both species exhibited characteristic spreading behaviors, accompanied by cytoskeletal extension along with F-actin growth, and formed nodules. Larvae of both species also expressed an antimicrobial peptide called apolipophorin III (ApoLpIII) in response to bacterial infection. However, these immune responses were significantly suppressed by a specific inhibitor to phospholipase A2 (PLA2). Each honeybee genome encodes four PLA2 genes (PLA2A ~ PLA2D), representing four orthologous combinations between the two species. In response to P. larvae infection, both species significantly up-regulated PLA2 enzyme activities and the expression of all four PLA2 genes. To determine the roles of the four PLA2s in the immune responses, RNA interference (RNAi) was performed by injecting gene-specific double stranded RNAs (dsRNAs). All four RNAi treatments significantly suppressed the immune responses, and specific inhibition of the two secretory PLA2s (PLA2A and PLA2B) potently suppressed nodule formation and ApoLpIII expression. These results demonstrate the cellular and humoral immune responses of A. mellifera and A. cerana against P. larvae. This study suggests that eicosanoids play a crucial role in mediating common immune responses in two closely related honeybees.


Assuntos
Infecções Bacterianas , Paenibacillus larvae , Abelhas , Animais , Paenibacillus larvae/fisiologia , Larva , Dieta , Fosfolipases A2
3.
Microorganisms ; 11(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38138051

RESUMO

Pepper plants (Capsicum annuum) with severe leaf curl symptoms were collected in 2013 from Bangalore, Karnataka, India. The detection results showed a co-infection between the tomato leaf curl Joydebpur virus (ToLCJoV) and tomato leaf curl Bangladesh betasatellite (ToLCBDB) through the sequencing analysis of PCR amplicons. To pinpoint the molecular mechanism of this uncommon combination, infectious clones of ToLCJoV and two different betasatellites-ToLCBDB and tomato leaf curl Joydebpur betasatellite (ToLCJoB)-were constructed and tested for their infectivity in Nicotiana benthamiana. Together, we conducted various combined agroinoculation studies to compare the interaction of ToLCJoV with non-cognate and cognate betasatellites. The natural non-cognate interaction between ToLCJoV and ToLCBDB showed severe symptoms compared to the mild symptoms of a cognate combination (ToLCJoV × ToLCJoB) in infected plants. A sequence comparison among betasatellites and their helper virus wasperformed and the iteron resemblances in ToLCBDB as well as ToLCJoB clones were processed. Mutant betasatellites that comprised iteron modifications revealed that changes in iteron sequences could disturb the transreplication process between betasatellites and their helper virus. Our study might provide an important consideration for determining the efficiency of transreplication activity between betasatellites and their helper virus.

4.
Microbiol Spectr ; 11(6): e0144623, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37811937

RESUMO

IMPORTANCE: In this study, we confirmed the binding of M13KO7 to Potato virus Y (PVY) using enzyme-linked immunosorbent assay. M13KO7 is a "bald" bacteriophage in which no recombinant antibody is displayed. M13KO7 is easy to propagate by using Escherichia coli, making this method more reasonable in economic perspective. Based on this study, we suggest that M13KO7 detection system has applicability as a novel biological tool for the detection of PVY.


Assuntos
Bacteriófagos , Potyvirus , Bacteriófagos/genética , Ensaio de Imunoadsorção Enzimática , Escherichia coli/genética , Doenças das Plantas
5.
Front Plant Sci ; 14: 1206255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492775

RESUMO

Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite Begomovirus belonging to the family Geminiviridae, causes severe damage to many economically important crops worldwide. In the present study, pathogenicity of Asian (ToLCNDV-In from Pakistan) and Mediterranean isolates (ToLCNDV-ES from Italy) were examined using infectious clones in tomato plants. Only ToLCNDV-In could infect the three tomato cultivars, whereas ToLCNDV-ES could not. Genome-exchange of the two ToLCNDVs revealed the ToLCNDV DNA-A segment as the main factor for ToLCNDV infectivity in tomato. In addition, serial clones with chimeric ToLCNDV-In A and ToLCNDV-ES A genome segments were generated to identify the region determining viral infectivity in tomatoes. A chimeric clone carrying the ToLCNDV-In coat protein (CP) exhibited pathogenic adaptation in tomatoes, indicating that the CP of ToLCNDV is essential for its infectivity. Analyses of infectious clones carrying a single amino acid substitution revealed that amino acid at position 143 of the CP is critical for ToLCNDV infectivity in tomatoes. To better understand the molecular basis whereby CP function in pathogenicity, a yeast two-hybrid screen of a tomato cDNA library was performed using CPs as bait. The hybrid results showed different interactions between the two CPs and Ring finger protein 44-like in the tomato genome. The relative expression levels of upstream and downstream genes and Ring finger 44-like genes were measured using quantitative reverse transcription PCR (RT-qPCR) and compared to those of control plants. This is the first study to compare the biological features of the two ToLCNDV strains related to viral pathogenicity in the same host plant. Our results provide a foundation for elucidating the molecular mechanisms underlying ToLCNDV infection in tomatoes.

6.
Microbiol Spectr ; 11(4): e0479822, 2023 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-37367433

RESUMO

Multipartite viruses package their genomic segments independently and mainly infect plants; few of them target animals. Nanoviridae is a family of multipartite single-stranded DNA (ssDNA) plant viruses that individually encapsidate ssDNAs of ~1 kb and transmit them through aphids without replication in aphid vectors, thereby causing important diseases in host plants, mainly leguminous crops. All of these components constitute an open reading frame to perform a specific role in nanovirus infection. All segments contain conserved inverted repeat sequences, potentially forming a stem-loop structure and a conserved nonanucleotide, TAGTATTAC, within a common region. This study investigated the variations in the stem-loop structure of nanovirus segments and their impact using molecular dynamics (MD) simulations and wet lab approaches. Although the accuracy of MD simulations is limited by force field approximations and simulation time scale, explicit solvent MD simulations were successfully used to analyze the important aspects of the stem-loop structure. This study involves the mutants' design, based on the variations in the stem-loop region and construction of infectious clones, followed by their inoculation and expression analysis, based on nanosecond dynamics of the stem-loop structure. The original stem-loop structures showed more conformational stability than mutant stem-loop structures. The mutant structures were expected to alter the neck region of the stem-loop by adding and switching nucleotides. Changes in conformational stability are suggested expression variations of the stem-loop structures found in host plants with nanovirus infection. However, our results can be a starting point for further structural and functional analysis of nanovirus infection. IMPORTANCE Nanoviruses comprise multiple segments, each with a single open reading frame to perform a specific function and an intergenic region with a conserved stem-loop region. The genome expression of a nanovirus has been an intriguing area but is still poorly understood. We attempted to investigate the variations in the stem-loop structure of nanovirus segments and their impact on viral expression. Our results show that the stem-loop composition is essential in controlling the virus segments' expression level.


Assuntos
Afídeos , Fabaceae , Nanovirus , Animais , Nanovirus/genética , Doenças das Plantas , Genoma Viral , Afídeos/genética
7.
Plant Pathol J ; 39(3): 255-264, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37291766

RESUMO

Sweet potato symptomless virus 1 (SPSMV-1) is a single-stranded circular DNA virus, belonging to the genus Mastrevirus (family Geminiviridae) that was first identified on sweet potato plants in South Korea in 2012. Although SPSMV-1 does not induce distinct symptoms in sweet potato plants, its co-infection with different sweet potato viruses is highly prevalent, and thus threatens sweet potato production in South Korea. In this study, the complete genome sequence of a Korean isolate of SPSMV-1 was obtained by Sanger sequencing of polymerase chain reaction (PCR) amplicons from sweet potato plants collected in the field (Suwon). An infectious clone of SPSMV-1 (1.1-mer) was constructed, cloned into the plant expression vector pCAMBIA1303, and agro-inoculated into Nicotiana benthamiana using three Agrobacterium tumefaciens strains (GV3101, LBA4404, and EHA105). Although no visual differences were observed between the mock and infected groups, SPSMV-1 accumulation was detected in the roots, stems, and newly produced leaves through PCR. The A. tumefaciens strain LBA4404 was the most effective at transferring the SPSMV-1 genome to N. benthamiana. We confirmed the viral replication in N. benthamiana samples through strand-specific amplification using virion-sense- and complementary-sense-specific primer sets.

8.
Front Cell Infect Microbiol ; 13: 1124596, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761901

RESUMO

After the nationwide, massive winter losses of honey bees in Korea during the winter of 2021, samplings were conducted from live honey bees in colonies and dead honey bees nearby colonies in the same bee-farms in six regions in Korea. Each sample was subjected to virome analysis using high-throughput sequencing technology. The number of viral reads was the lowest in the live honey bee group sample with 370,503 reads and the highest in the dead honey bee group sample with 42,659,622 reads. Viral contigs were matched with the viral genomes of the black queen cell virus, deformed wing virus, Israeli acute paralysis virus, and sacbrood virus, all of which have been previously reported in Korea. However, Apis rhabdovirus 5, bee macula-like virus, Varroa orthomyxovirus-1, Hubei partiti-like virus 34, Lake Sinai virus 2, 3, and 4, and the Ditton virus, were also discovered in this study, which are the first records in Korea. Plant viral sequences resembling those of Arabidopsis latent virus 1, and a novel viral sequence was also discovered. In the present study 55 complete viral genome sequences were identified. This study is the first virome analysis of domestic honey bees and provides the latest information on the diversity of honey bee viruses in Korea.


Assuntos
Himenópteros , Vírus , Abelhas , Animais , Viroma , Vírus/genética , República da Coreia
9.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36768502

RESUMO

Tomato leaf curl New Delhi virus-ES (ToLCNDV-ES), a high threat to cucurbits in the Mediterranean Basin, is listed as a different strain from the Asian ToLCNDV isolates. In this study, the infectivity of two clones previously isolated from Italy and Pakistan were compared in cucumbers, which resulted in the opposite symptom appearance. The swapping subgenome was processed; however, the mechanisms related to the disease phenotype remain unclear. To identify the disease-associated genes that could contribute to symptom development under the two ToLCNDV infections, the transcriptomes of ToLCNDV-infected and mock-inoculated cucumber plants were compared 21 days postinoculation. The number of differentially expressed genes in ToLCNDV-India-infected plants was 10 times higher than in ToLCNDV-ES-infected samples. The gene ontology (GO) and pathway enrichment were analyzed using the Cucurbits Genomics Database. The flavonoid pathway-related genes were upregulated in ToLCNDV-ES, but some were downregulated in ToLCNDV-India infection, suggesting their role in resistance to the two ToLCNDV infections. The relative expression levels of the selected candidate genes were validated by qRT-PCR under two ToLCNDV-infected conditions. Our results reveal the different infectivity of the two ToLCNDVs in cucumber and also provide primary information based on RNA-seq for further analysis related to different ToLCNDV infections.


Assuntos
Begomovirus , Cucumis sativus , Cucumis sativus/genética , Reação em Cadeia da Polimerase , Índia , Paquistão , Itália , Begomovirus/genética , Doenças das Plantas/genética
10.
Arch Insect Biochem Physiol ; 112(2): e21992, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36575628

RESUMO

The small brown planthopper, Laodelphax striatellus, is a destructive pest insect found in rice fields. L. striatellus not only directly feeds on the phloem sap of rice but also transmits various viruses, such as rice stripe virus (RSV) and rice black-streaked dwarf virus, resulting in serious loss of rice production. RSV is a rice-infecting virus that is found mainly in Korea, China, and Japan. To develop novel strategies to control L. striatellus and L. striatellus-transmitted viruses, various studies have been conducted, based on vector biology, interactions between vectors and pathogens, and omics, including transcriptomics, proteomics, and metabolomics. In this review, we discuss the roles of saliva proteins during phloem sap-sucking and virus transmission, the diversity and role of the microbial community in L. striatellus, the profile and molecular mechanisms of insecticide resistance, classification of L. striatellus-transmitted RSV, its host range and symptoms, its genome composition and roles of virus-derived proteins, its distribution, interactions with L. striatellus, and resistance and control, to suggest future directions for integrated pest management to control L. striatellus and L. striatellus-transmitted viruses.


Assuntos
Hemípteros , Oryza , Tenuivirus , Animais , Tenuivirus/genética , Insetos Vetores/genética , Hemípteros/genética , Insetos/genética , Perfilação da Expressão Gênica , Proteínas Virais/metabolismo
11.
Arch Insect Biochem Physiol ; 112(2): e21980, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36394455

RESUMO

To evaluate population fluctuations in relation to weather parameters and biorational management of sucking insect vectors in chili (Capsicum annuum L.), we conducted a study at the experimental field of Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, in 2020 and 2021. It has been shown in this study that sucking insects (aphids, jassids, whiteflies, and thrips) were active throughout the study period. The highest count of sucking insect vectors (24.67 aphids, 13.72 whitefly, and 56.56 thrips) in March and (14.83 jassid) in April was recorded at average temperatures of 34-36°C and 31°C, respectively. There was a positive correlation between pest abundance and temperature, relative humidity, and rainfall for all insects, with the exception of a negative correlation between whiteflies and temperature and rainfall. The results of linear regression models showed that abiotic factors contribute to pest abundance levels, with 100R2 values of 14.9 (thrips), 46.3 (jassids), 7.1 (whiteflies), and 0.67 (aphids); the results were statistically significant for all models in the case of thrips, jassids, and whiteflies, but not significant in the case of aphids. The most effective treatment was spinosad 45SC, a bacterium-derived pesticide recommended for the control of sucking insect vector complexes in chili. The results from the spinosad-treated plot, in terms of insect counts and corresponding mortality rates, were as follows: aphids (3.68), 68.89%; jassids (3.52), 72.01%; whiteflies (3.00), 66.69%; and thrips (3.40), 69.20%. The results of this study will aid in developing predictive models of different control agents against sucking insect vectors in vegetable crops.


Assuntos
Afídeos , Capsicum , Tisanópteros , Animais , Bangladesh , Insetos , Dinâmica Populacional , Insetos Vetores
12.
Arch Insect Biochem Physiol ; 112(2): e21984, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36397643

RESUMO

Begomoviruses are economically important plant viruses and are transmitted by Bemisia tabaci which is a complex of various cryptic species. However, it is uncertain whether most begomoviruses that infect host plants are transmitted by B. tabaci at a similar rate. We compared the begomovirus profiles that were detected in a total of 37 whitefly populations and 52 host plants on Java Island, Indonesia. Seven begomovirus species were detected in B. tabaci at different rates: pepper yellow leaf curl Indonesia virus (PepYLCIV, 56.8%), tomato yellow leaf curl Kanchanaburi virus (TYLCKaV, 46.0%), tomato leaf curl New Delhi virus (ToLCNDV, 21.6%), squash leaf curl China virus (SLCCNV, 21.6%), ageratum yellow vein China virus (AYVCNV, 2.7%), mungbean yellow mosaic India virus (MYMIV, 2.7%), and okra enation leaf curl virus (OELCuV, 2.7%). The begomoviruses were detected at different rates in three cryptic species of B. tabaci. In addition, six begomovirus species were detected in the various host plants at different rates: PepYLCIV (67.3%), TYLCKaV (53.9%), ToLCNDV (13.5%), MYMIV (11.5%), AYVCNV (3.9%), and Tomato yellow leaf curl Thailand virus (TYLCTHV) (1.9%). By comparing the virus presence between whiteflies and plants, five begomoviruses (AYVCNV, MYMIV, PepYLCIV, ToLCNDV, and TYLCKaV) were detected in both samples, but their sequence similarity was highly variable depending on the begomovirus themselves; TYLCKaV was highest (99.4%-100%) than any other viruses. Our study suggests B. tabaci acquire begomoviruses at different rates from plants. This study provides important information on the potential variation in the begomovirus transmission mechanism.


Assuntos
Begomovirus , Hemípteros , Animais , Indonésia , Doenças das Plantas , Tailândia , Insetos Vetores
13.
Arch Insect Biochem Physiol ; 112(2): e21981, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36331499

RESUMO

Bemisia tabaci is a species complex consisting of various genetically different cryptic species worldwide. To understand the genetic characteristics and geographic distribution of cryptic species of B. tabaci in Asia, we conducted an extensive collection of B. tabaci samples in ten Asian countries (Bangladesh, Indonesia, Japan, Korea, Myanmar, Nepal, Philippines, Singapore, Taiwan, and Vietnam) from 2013 to 2020 and determined 56 different partial sequences of mitochondrial cytochrome oxidase subunit I (COI) DNA. In addition, information on 129 COI sequences of B. tabaci identified from 16 Asian countries was downloaded from the GenBank database. Among the total 185 COI sequences of B. tabaci, the sequence variation reached to 19.68%. In addition, there were 31 cryptic species updated from 16 countries in Asia, that is, Asia I, Asia I India, Asia II (1-13), Asia III, Asia IV, Asia V, China 1-6, MEAM (1, 2, K), MED, Australia/Indonesia, Japan (1 and 2). Further, MED cryptic species consisted of 2 clades, Q1 and Q2. This study provides updated information to understand the genetic variation and geographic diversity of B. tabaci in Asia.


Assuntos
Hemípteros , Mitocôndrias , Animais , Filogenia , Ásia , China , Hemípteros/genética , Variação Genética
15.
Viruses ; 14(10)2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36298721

RESUMO

Recombination between isolates of different virus species has been known to be one of the sources of speciation. Weeds serve as mixing vessels for begomoviruses, infecting a wide range of economically important plants, thereby facilitating recombination. Chenopodium album is an economically important weed spread worldwide. Here, we present the molecular characterization of a novel recombinant begomovirus identified from C. album in Lahore, Pakistan. The complete DNA- A genome of the virus associated with the leaf distortion occurred in the infected C. album plants was cloned and sequenced. DNA sequence analysis showed that the nucleotide sequence of the virus shared 93% identity with those of the rose leaf curl virus and the duranta leaf curl virus. Interestingly, this newly identified virus is composed of open reading frames (ORFs) from different origins. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the sequences. The infectious clone of the newly detected virus was found to be fully infectious in C. album and Nicotiana benthamiana as the viral DNA was successfully reconstituted from systemically infected tissues of inoculated plants, thus fulfilling Koch's postulates. Our study reveals a new speciation of an emergent ssDNA plant virus associated with C. album through recombination and therefore, proposed the tentative name 'Chenopodium leaf distortion virus' (CLDV).


Assuntos
Begomovirus , Geminiviridae , Geminiviridae/genética , DNA Viral/genética , Filogenia , Transferência Genética Horizontal , Paquistão , Doenças das Plantas , Análise de Sequência de DNA , Genoma Viral
16.
Plant Dis ; 2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36222722

RESUMO

Citrus reticulata (mandarin) is an economically important fruit in Korea, with Jeju Island accounting for over 90% of the local production (Park et al. 2019). In July 2021, one leaf each from 12 individual mandarin (Citrus reticulata) tree presenting viral disease-like symptoms (chlorotic blotching, yellowing and mosaic) were collected from Namwon-eup, Seogwipo-si, Jeju Island to determine the presence and severity of infection. Based on different symptoms on collected 12 leaves, three samples (samples #1, #6 and #7) were selected for high throughput sequencing (HTS) analysis. Total RNA was extracted from each sample using the NucleoSpin RNA Plant Kit (Macherey-Nagel, Düren, Germany) according to the standard protocol. The Illumina TruSeq Stranded mRNA Library Preparation protocol was followed to generate cDNA libraries. HTS was performed using the Illumina Novaseq 6000 platform by Macrogen Inc. (Seoul, South Korea). A total of 106,072,022 (sample #1), 109,761,956 (sample #6) and 132,284,268 (sample #7) raw reads (average length 101 bp) were generated by HTS. The HTS data was analyzed using the "trim reads" and "map reads to reference" tools built in CLC Genomics Workbench software (Qiagen Bioinformatics, Hilden, Germany). All the virus related sequence reads were mapped to the citrus tristeza virus (CTV), citrus leaf blotch virus (CLBV) and citrus leaf blotch virus 2 (CLBV 2). CTV and CLBV was detected in all the three samples. However, CLBV 2 was detected only in sample #6, which showed symptoms of chlorotic blotching in leaves. A total of 1,677,131 reads were identified for CLBV 2. CLBV 2 was first reported in Haruka (C. junos × C. grandis) in China (Cao et al. 2018). A viral genome sequence was assembled by mapping the Illumina reads to the Reference Viral DataBase (RVDB) (June 2021) (Goodacre at al., 2018). The resultant CLBV 2 (GenBank accession number OL871235) was 8,692 nt long and shared more than 99% nucleotide and amino acid identity to CLBV 2 CN-2 isolate (MH558590). RT-PCR was used for further validation with 12 collected samples. Viral RNA was extracted using the Viral Gene-spin™ Viral DNA/RNA Extraction Kit (iNtRON Biotechnology, Seongnam, Korea). Two primer pairs, namely CLBV2-1-F (5'-TCATCCAGAAGGGTATCTCGGA-3')/CLBV2-1-R (5'-CCCTCCTCACCTTCCCCATA-3') and CLBV2-2-F (5'-GGGTCAAGAAGCACGTCAGA-3')/CLBV2-2-R(5'-CGTTCCACATCCATTGAAGGAC-3'), were designed based on the previously assembled sequence (OL871235), and a 588 bp fragment encoding a partial replicase protein and a 780 bp fragment encoding a partial coat protein were successfully amplified from sample #6. The amplification products were cloned into the pGEM-T Easy vector (Promega, Madison, WI, USA), plasmid DNA was isolated and sequenced in both direction by Macrogen Inc. The obtained sequences shared 99.87-100% identity with HTS assembled sequence and 99.15-99.49% identity with CLBV 2 CN-2 (MH558590). However, CLBV 2 was not identified in the remaining 11 samples. To the best of our knowledge, this is the first report of CLBV 2 in Korea in mandarin in mixed infection with CTV and CLBV.

17.
Front Plant Sci ; 13: 970941, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247535

RESUMO

Plant viruses are responsible for the most devastating and commercially significant plant diseases, especially in tropical and subtropical regions. The genus begomovirus is the largest one in the family Geminiviridae, with a single-stranded DNA genome, either monopartite or bipartite. Begomoviruses are transmitted by insect vectors, such as Bemisia tabaci. Begomoviruses are the major causative agents of diseases in agriculture globally. Because of their diversity and mode of evolution, they are thought to be geographic specific. The emerging begomoviruses are of serious concern due to their increasing host range and geographical expansion. Several begomoviruses of Asiatic origin have been reported in Europe, causing massive economic losses; insect-borne transmission of viruses is a critical factor in virus outbreaks in new geographical regions. This review highlights crucial information regarding Asia's four emerging and highly destructive begomoviruses. We also provided information regarding several less common but still potentially important pathogens of different crops. This information will aid possible direction of future studies in adopting preventive measures to combat these emerging viruses.

18.
Plants (Basel) ; 11(5)2022 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-35270174

RESUMO

Tomato leaf curl New Delhi virus (ToLCNDV) became an alerting virus in Europe from 2017 to 2020 because of its significant damage to Cucurbitaceae cultivation. Until now, just some cucurbit crops including sponge gourd, melon, pumpkin, and cucumber were reported to be resistant to ToLCNDV, but no commercial cultivars are available. In this study, a new isolate of ToLCNDV was identified in Pakistan and analyzed together with ToLCNDV-ES which was previously isolated in Italy. Furthermore, infectious clones of two ToLCNDV isolates were constructed and agroinoculated into different cucurbit crops to verify their infectivity. Results showed that both isolates exhibited severe infection on all tested cucurbit (>70%) except watermelon. Thus, those cultivars may be good candidates in the first step of screening genetic resources for resistance on both Southeast Asian and Mediterranean ToLCNDV isolates. Additional, comparison pathogenicity of different geographical ToLCNDV isolates will be aided to understand viral characterization as such knowledge could facilitate breeding resistance to this virus.

19.
Plant Pathol J ; 37(6): 641-651, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34897255

RESUMO

Tomato yellow leaf curl virus (TYLCV) is one of the most important plant viruses belonging to the genus Begomovirus of the family Geminiviridae. To identify natural weed hosts that could act as reservoirs of TYLCV, 100 samples were collected at a TYLCV-affected tomato farm in Iksan from 2013 to 2014. The sample weeds were identified as belonging to 40 species from 18 families. TYLCV was detected in 57 samples belonging to 28 species through polymerase chain reaction using root samples including five species (Eleusine indica, Digitaria ciliaris, Echinochloa crus-galli, Panicum dichotomiflorum, and Setaria faberi) from the family Poaceae. Whitefly Bemisia tabaci-mediated TYLCV transmission from TYLCV-infected E. indica plants to healthy tomatoes was confirmed, and inoculated tomatoes showed typical symptoms, such as leaf curling and yellowing. In addition, TYLCV was detected in leaf and root samples of E. indica plants inoculated by both whitefly-mediated transmission using TYLCV-viruliferous whitefly and agro-inoculation using a TYLCV infectious clone. The majority of mastreviruses infect monocotyledonous plants, but there have also been reports of mastreviruses that can infect dicotyledonous plants, such as the chickpea chlorotic dwarf virus. No exception was reported among begomoviruses known as infecting dicots only. This is the first report of TYLCV as a member of the genus Begomovirus infecting monocotyledonous plants.

20.
Viruses ; 13(12)2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34960653

RESUMO

Fraxinus rhynchophylla, common name ash, belongs to the family Oleaceae and is found in China, Korea, North America, the Indian subcontinent, and eastern Russia. It has been used as a traditional herbal medicine in Korea and various parts of the world due to its chemical constituents. During a field survey in March 2019, mild vein thickening (almost negligible) was observed in a few ash trees. High-throughput sequencing of libraries of total DNA from ash trees, rolling-circle amplification (RCA), and polymerase chain reaction (PCR) allowed the identification of a Fraxinus symptomless virus. This virus has five confirmed open reading frames along with a possible sixth open reading frame that encodes the movement protein and is almost 2.7 kb in size, with a nonanucleotide and stem loop structure identical to begomoviruses. In terms of its size and structure, this virus strongly resembles begomoviruses, but does not show any significant sequence identity with them. To confirm movement of the virus within the trees, different parts of infected trees were examined, and viral movement was successfully observed. No satellite molecules or DNA B were identified. Two-step PCR confirmed the virion and complementary strands during replication in both freshly collected infected samples of ash tree and Nicotiana benthamiana samples agro-inoculated with infectious clones. This taxon is so distantly grouped from other known geminiviruses that it likely represents a new geminivirus genus.


Assuntos
Fraxinus/virologia , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Doenças das Plantas/virologia , Sequência de Bases , DNA Viral/genética , Geminiviridae/genética , Genoma Viral , Fases de Leitura Aberta , Filogenia , República da Coreia , /virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...